Dual D-type flip-flop with set and reset; positive edge-trigger

74LV74

FEATURES

- Wide operating voltage: 1.0 to 5.5V
- Optimized for Low Voltage applications: 1.0 to 3.6V
- Accepts TTL input levels between V_{CC} = 2.7V and V_{CC} = 3.6V
- Typical V_{OLP} (output ground bounce) < 0.8V @ V_{CC} = 3.3V, $T_{amb} = 25^{\circ}C$
- Typical V_{OHV} (output V_{OH} undershoot) > 2V @ V_{CC} = 3.3V, $T_{amb} = 25^{\circ}C$
- Output capability: standard
- I_{CC} category: flip-flops

QUICK REFERENCE DATA

GND = 0V: $T_{amb} = 25^{\circ}C$: $t_r = t_f \le 2.5$ ns

DESCRIPTION

The 74LV74 is a low-voltage Si-gate CMOS device and is pin and function compatible with 74HC/HCT74.

The 74LV74 is a dual positive edge triggered, D-type flip-flop with individual data (D) inputs, clock (CP) inputs, set (\overline{S}_D) and (\overline{R}_D) inputs; also complementary Q and \overline{Q} outputs.

The set and reset are asynchronous active LOW inputs and operate independently of the clock input. Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition, for predictable operation.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay nCP to nQ, nQ nS _D to nQ, nQ nR _D to nQ, nQ	$C_{L} = 15pF$ $V_{CC} = 3.3V$	11 14 14	ns
f _{max}	Maximum clock frequency	$C_{L} = 15pF$ $V_{CC} = 3.3V$	76	MHz
Cl	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per flip-flop	Notes 1 and 2	24	pF

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW) $\begin{array}{l} \mathsf{P}_{D} = \mathsf{C}_{PD} \times \mathsf{V}_{CC}{}^2 \times \mathsf{f}_i + \Sigma \left(\mathsf{C}_L \times \mathsf{V}_{CC}{}^2 \times \mathsf{f}_o\right) \text{ where:} \\ \mathsf{f}_i = \mathsf{input} \text{ frequency in MHz; } \mathsf{C}_L = \mathsf{output} \text{ load capacitance in pF;} \\ \mathsf{f}_o = \mathsf{output} \text{ frequency in MHz; } \mathsf{V}_{CC} = \mathsf{supply voltage in V;} \\ \Sigma \left(\mathsf{C}_L \times \mathsf{V}_{CC}{}^2 \times \mathsf{f}_o\right) = \mathsf{sum of the outputs.} \end{array}$

2. The condition is $V_I = GND$ to V_{CC}

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
14-Pin Plastic DIL	-40°C to +125°C	74LV74 N	74LV74 N	SOT27-1
14-Pin Plastic SO	-40°C to +125°C	74LV74 D	74LV74 D	SOT108-1
14-Pin Plastic SSOP Type II	–40°C to +125°C	74LV74 DB	74LV74 DB	SOT337-1
14-Pin Plastic TSSOP Type I	-40°C to +125°C	74LV74 PW	74LV74PW DH	SOT402-1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1, 13	$1\overline{R}_{D,}2\overline{R}_{D}$	Asynchronous reset-direct input (active-LOW)
2, 12	1D, 2D	Data inputs
3, 11	1CP, 2CP	Clock input (LOW-to-HIGH), edge-triggered)
4, 10	$1\overline{S}_{D,}2\overline{S}_{D}$	Asynchronous set-direct input (active-LOW)
5, 9	1Q, 2Q	True flip-flop outputs
6, 8	1 <u>Q</u> , 2 <u>Q</u>	Complement flip-flop outputs
7	GND	Ground (0V)
14	V _{CC}	Positive supply voltage

FUNCTION TABLE

	INPU	OUT	PUTS		
<mark>S</mark> ₀	R _D	СР	D	Q	Q
L H L	H L L	X X X	X X X	H L H	LHH
	INPU	TS		OUT	PUTS
<u></u> <u> </u> - -	INPU R _D	TS CP	D	OUTI Q _{n+1}	PUTS Q _{n+1}

Н = HIGH voltage level L

LOW voltage level =

= don't care

= LOW-to-HIGH CP transition

 Q_{n+1} = state after the next LOW-to-HIGH CP transition

Х

î

Dual D-type flip-flop with set and reset; positive edge-trigger

LOGIC DIAGRAM (ONE FLIP-FLOP)

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT
V _{CC}	DC supply voltage	See Note1	1.0	3.3	5.5	V
VI	Input voltage		0	-	V _{CC}	V
Vo	Output voltage		0	-	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times except for Schmitt-trigger inputs	$\begin{array}{c} V_{CC} = 1.0V \text{ to } 2.0V \\ V_{CC} = 2.0V \text{ to } 2.7V \\ V_{CC} = 2.7V \text{ to } 3.6V \\ V_{CC} = 3.6V \text{ to } 5.5V \end{array}$	- - - -	- - - -	500 200 100 50	ns/V

NOTE:

1. The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V.

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	PARAMETER CONDITIONS			
V _{CC}	DC supply voltage		-0.5 to +7.0	V	
±I _{IK}	DC input diode current	$V_{\rm I} < -0.5 \text{ or } V_{\rm I} > V_{\rm CC} + 0.5 V$	20	mA	
±I _{ОК}	DC output diode current	$V_{\rm O}$ < -0.5 or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5V	50	mA	
±IO	DC output source or sink current – standard outputs	$-0.5V < V_O < V_{CC} + 0.5V$	25	mA	
±I _{GND} , ±I _{CC}	DC V _{CC} or GND current for types with –standard outputs		50	mA	
T _{stg}	Storage temperature range		-65 to +150	°C	
	Power dissipation per package	for temperature range: -40 to +125°C			
P _{tot}	-plastic DIL	above +70°C derate linearly with 12mW/K	750	mW	
' tot	-plastic mini-pack (SO)	above +70°C derate linearly with 8 mW/K	500	11100	
	-plastic shrink mini-pack (SSOP and TSSOP)	above +60°C derate linearly with 5.5 mW/K	400		

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Dual D-type flip-flop with set and reset; positive edge-trigger

74LV74

DC CHARACTERISTICS

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	-40	°C to +8	5°C	-40°C to	o +125°C	
			MIN	TYP ¹	MAX	MIN	MAX	1
		$V_{CC} = 1.2V$	0.9			0.9		
VIH	HIGH level Input	$V_{CC} = 2.0 V$	1.4			1.4		
voltage	voltage	V _{CC} = 2.7 to 3.6V	2.0			2.0] `
		V _{CC} = 4.5 to 5.5V	0.7*V _{CC}			0.7*V _{CC}		
		$V_{CC} = 1.2V$			0.3		0.3	
VIL	LOW level Input	$V_{CC} = 2.0V$			0.6		0.6	
۹Ľ	voltage	V _{CC} = 2.7 to 3.6V			0.8		0.8	Ì
		V _{CC} = 4.5 to 5.5			0.3*V _{CC}		0.3*V _{CC}	
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$		1.2				
		$V_{CC} = 2.0V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	1.8	2.0		1.8		
V _{OH} HIGH level output voltage; all outputs	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	2.5	2.7		2.5		V	
	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	2.8	3.0		2.8			
		$V_{CC} = 4.5 \text{V}; \text{V}_{\text{I}} = \text{V}_{\text{IH}} \text{ or } \text{V}_{\text{IL};} - \text{I}_{\text{O}} = 100 \mu \text{A}$	4.3	4.5		4.3		
V _{он}	HIGH level output voltage;	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 6mA$	2.40	2.82		2.20		v
чОн	STANDARD outputs	$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 12mA$	3.60	4.20		3.50		
		V_{CC} = 1.2V; V_I = V_{IH} or $V_{IL;} I_O$ = 100 μ A		0				
	LOW level output	V_{CC} = 2.0V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2	v
V _{OL}	voltage; all outputs	V_{CC} = 2.7V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 100 μ A		0	0.2		0.2	
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0	0.2		0.2	
		$V_{CC} = 4.5 \text{V}; \text{V}_{\text{I}} = \text{V}_{\text{IH}} \text{ or } \text{V}_{\text{IL};} \text{I}_{\text{O}} = 100 \mu \text{A}$		0	0.2		0.2	
V _{OL}	LOW level output voltage;	V_{CC} = 3.0V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 6mA		0.25	0.40		0.50	v l
VOL STANDARD outputs		V_{CC} = 4.5V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 12mA		0.35	0.55		0.65	
I	Input leakage current	V_{CC} = 5.5V; V_{I} = V_{CC} or GND			1.0		1.0	μA
I _{CC}	Quiescent supply current; flip-flops	$V_{CC} = 5.5V; V_I = V_{CC} \text{ or GND}; I_O = 0$			20.0		80	μA
∆l _{CC}	Additional quiescent supply current per input	$V_{CC} = 2.7V$ to 3.6V; $V_1 = V_{CC} - 0.6V$			500		850	μA

NOTE:

1. All typical values are measured at $T_{amb} = 25^{\circ}C$.

Dual D-type flip-flop with set and reset; positive edge-trigger

74LV74

AC CHARACTERISTICS

 $\text{GND} = \text{0V}; \, t_r = t_f \, \leq \, \text{2.5ns}; \, \text{C}_L = \text{50pF}; \, \text{R}_L = 1 \text{K} \Omega$

SYMBOL	PARAMETER	WAVEFORM	CONDITION		LIMITS 10 to +85 °	С		IITS +125 °C	UNIT							
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX								
			1.2	-	70	-	-	-								
			2.0	-	24	44	-	56								
t _{PHL} /t _{PLH}	Propagation delay nCP to nQ , $n\overline{Q}$	Figures, 1, 3	2.7	-	18	28	-	41	ns							
			3.0 to 3.6	-	13 ²	26	-	33								
			4.5 to 5.5	-	9.5 ³	17	-	23								
			1.2	-	90	-	-	-								
			2.0	-	31	46	-	58								
t _{PHL} /t _{PLH}	Propagation delay nS _D to nQ, nQ	Figures 2, 3	2.7	-	23	34	-	43	ns							
			3.0 to 3.6	-	17 ²	27	-	34								
			4.5 to 5.5	-	12 ³	19	-	24	1							
			1.2	-	90	-	-	-								
			2.0	-	31	46	-	58								
t _{PHL} /t _{PLH}	Propagation delay $n\overline{R}_{D}$ to nQ, nQ	Figures 2, 3	2.7	-	23	34	-	43	l3 ns							
	hito to ha, ha		3.0 to 3.6	-	17 ²	27	-	34								
			4.5 to 5.5	-	12 ³	19	-	24	1							
	t Clock pulse width									2.0	34	10	-	41	-	
			2.7	25	8	-	30	-								
t _W HIGH to LOW	Figure 1	3.0 to 3.6	20	7 ²	-	24	-	ns								
			4.5 to 5.5	15	6 ³	-	18	-								
			2.0	34	10	-	41	-	ns							
	Set or reset pulse		2.7	25	8	-	30	-								
t _W	width LOW	Figure 2	3.0 to 3.6	20	7 ²	-	24	-								
			4.5 to 5.5	15	6 ³	-	18	-								
			1.2	-	5	-	-	-								
			2.0	14	2	-	15	-								
t _{rem}	Removal time set or reset	Figure 2	2.7	10	1	-	11	-	ns							
	Sel OI Tesel		3.0 to 3.6	8	1 ²	-	9	-								
			4.5 to 5.5	6	1 ³	-	7	-								
			1.2	-	10	-	-	-								
			2.0	22	4	-	26	-								
t _{su}	Set-up time nD to nCP	Figure 1	2.7	12	3	-	15	-	ns							
	ID TO HOP		3.0 to 3.6	8	2 ²	-	10	-								
			4.5 to 5.5	6	1 ²	-	8	-								
			1.2	-	-10	-	-	-								
			2.0	3	-2	-	3	-								
t _h	Hold time nD to nCP	Figure 1	2.7	3	-2	-	3	-	ns							
			3.0 to 3.6	3	-2 ²	-	3	-								
			4.5 to 5.5	3	-2 ³	-	3	-								
			2.0	14	40	-	12	-								
,	Maximum clock		2.7	50	90	-	40	-								
f _{max}	pulse frequency	Figure 1	3.0 to 3.6	60	100 ²	-	48	-	MHz							
			4.5 to 5.5	70	110 ³	- 1	56	-								

NOTE:

1. Unless otherwise stated, all typical values are at $T_{amb} = 25^{\circ}C$.

2. Typical value measured at V_{CC} = 3.3V.

3. Typical value measured at V_{CC} = 5.0V.

Product specification

Dual D-type flip-flop with set and reset; positive edge-trigger

74LV74

Product specification

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFERENCES				
VERSION	IEC	JEDEC	EIAJ		PROJECTION	
SOT337-1		MO-150AB				