FEATURES

- Wide operating voltage: 1.0 to 5.5 V
- Optimized for Low Voltage applications: 1.0 to 3.6 V
- Accepts TTL input levels between $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$
- Typical $\mathrm{V}_{\mathrm{OLP}}$ (output ground bounce) $<0.8 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$,
$T_{\text {amb }}=25^{\circ} \mathrm{C}$
- Typical $\mathrm{V}_{\mathrm{OHV}}$ (output V_{OH} undershoot) $>2 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$,
$T_{\text {amb }}=25^{\circ} \mathrm{C}$
- Output capability: standard
- I CC category: flip-flops

DESCRIPTION

The 74LV74 is a low-voltage Si-gate CMOS device and is pin and function compatible with $74 \mathrm{HC} / \mathrm{HCT} 74$.

The 74LV74 is a dual positive edge triggered, D-type flip-flop with individual data (D) inputs, clock (CP) inputs, set (S_{D}) and (R_{D}) inputs; also complementary Q and \bar{Q} outputs.

The set and reset are asynchronous active LOW inputs and operate independently of the clock input. Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition, for predictable operation.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
tphL $/$ PpLH	Propagation delay $n C P$ to $n Q, n \bar{Q}$ $n \bar{S}_{D}$ to $n Q, n \bar{Q}$ $n R_{D}$ to $n Q, n \bar{Q}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & V_{C C}=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 11 \\ & 14 \\ & 14 \end{aligned}$	ns
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	76	MHz
C_{1}	Input capacitance		3.5	pF
CPD	Power dissipation capacitance per flip-flop	Notes 1 and 2	24	pF

NOTES:

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$)
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ; $\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{f}_{\mathrm{O}}=$ output frequency in MHz ; $\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.
2. The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. \#
14-Pin Plastic DIL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV 74 N	74 LV 74 N	SOT27-1
14-Pin Plastic SO	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$74 \mathrm{LV74} \mathrm{D}$	74 LV 74 D	SOT108-1
14-Pin Plastic SSOP Type II	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV74 DB	$74 \mathrm{LV74} \mathrm{DB}$	SOT337-1
14-Pin Plastic TSSOP Type I	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV 74 PW	$74 \mathrm{LV74PW}$ DH	SOT402-1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1,13	$1 \bar{R}_{\mathrm{D}, 2} 2 \bar{R}_{\mathrm{D}}$	Asynchronous reset-direct input (active-LOW)
2,12	$1 \mathrm{D}, 2 \mathrm{D}$	Data inputs
3,11	$1 \mathrm{CP}, 2 \mathrm{CP}$	Clock input (LOW-to-HIGH), edge-triggered)
4,10	$1 \bar{S}_{\mathrm{D}, 2} 2 \overline{\mathrm{~S}}_{\mathrm{D}}$	Asynchronous set-direct input (active-LOW)
5,9	$1 \mathrm{Q}, 2 \mathrm{Q}, 2 \overline{\mathrm{Q}}$	True flip-flop outputs
6,8	GND	Complement flip-flop outputs
7	$\mathrm{~V}, \mathrm{CC}$	Positive supply voltage
14		

FUNCTION TABLE

INPUTS				OUTPUTS	
$\overline{\mathbf{S}}_{\mathbf{D}}$	$\overline{\mathbf{R}}_{\mathbf{D}}$	$\mathbf{C P}$	\mathbf{D}	\mathbf{Q}	$\overline{\mathbf{Q}}$
L	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	H	H

INPUTS				OUTPUTS	
$\overline{\mathbf{S}}_{\mathbf{D}}$	$\overline{\mathbf{R}}_{\mathbf{D}}$	$\mathbf{C P}$	\mathbf{D}	$\mathbf{Q}_{\boldsymbol{n}+1}$	$\overline{\mathbf{Q}}_{\mathbf{n}+1}$
H	H	\uparrow	L	L	H
H	H	\uparrow	H	H	L

$\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level
$\mathrm{X}=$ don't care
$\uparrow \quad=$ LOW-to-HIGH CP transition
$\mathrm{Q}_{\mathrm{n}+1}=$ state after the next LOW-to-HIGH CP transition

LOGIC DIAGRAM (ONE FLIP-FLOP)

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT
$\mathrm{V}_{\text {CC }}$	DC supply voltage	See Note1	1.0	3.3	5.5	V
V_{1}	Input voltage		0	-	V_{CC}	V
V_{O}	Output voltage		0	-	V_{CC}	V
Tamb	Operating ambient temperature range in free air	See DC and AC characteristics	$\begin{aligned} & \hline-40 \\ & -40 \end{aligned}$		$\begin{gathered} +85 \\ +125 \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input rise and fall times except for Schmitt-trigger inputs	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V} \text { to } 2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.0 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	-	-	$\begin{aligned} & 500 \\ & 200 \\ & 100 \\ & 50 \end{aligned}$	ns/V

NOTE:

1. The $L V$ is guaranteed to function down to $V_{C C}=1.0 \mathrm{~V}$ (input levels $G N D$ or $V_{C C}$); $D C$ characteristics are guaranteed from $V_{C C}=1.2 \mathrm{~V}$ to $V_{C C}=5.5 \mathrm{~V}$.

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

In accordance with the Absolute Maximum Rating System (IEC 134)
Voltages are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage	$-0.5 \mathrm{to}+7.0$	V	
$\pm \mathrm{I}_{\mathrm{K}}$	DC input diode current	$\mathrm{V}_{\mathrm{I}}<-0.5$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	20	mA
$\pm \mathrm{I}_{\mathrm{OK}}$	DC output diode current	$\mathrm{V}_{\mathrm{O}}<-0.5$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	50	mA
$\pm \mathrm{I}_{\mathrm{O}}$	DC output source or sink current - standard outputs	$-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	25	mA
$\pm \mathrm{I}_{\mathrm{GND}}$, $\pm \mathrm{I}_{\mathrm{CC}}$	DC V_{CC} or GND current for types with -standard outputs		50	mA
$\mathrm{~T}_{\text {stg }}$	Storage temperature range	for temperature range: -40 to $+125^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ derate linearly with $12 \mathrm{~mW} / \mathrm{K}$ above $+70^{\circ} \mathrm{C}$ derate linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $+60^{\circ} \mathrm{C}$ derate linearly with $5.5 \mathrm{~mW} / \mathrm{K}$	750 500 $P_{\text {tot }}$	Power dissipation per package -plastic DIL -plastic mini-pack (SO) -plastic shrink mini-pack (SSOP and TSSOP)

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Dual D-type flip-flop with set and reset; positive edge-trigger

DC CHARACTERISTICS
Over recommended operating conditions voltages are referenced to GND (ground = OV)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
			MIN	TYP ${ }^{1}$	MAX	MIN	MAX	
V_{IH}	HIGH level Input voltage	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	0.9			0.9		V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.4			1.4		
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V	2.0			2.0		
		$\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V	$0.7 * V_{\text {CC }}$			$0.7 * \mathrm{~V}_{\mathrm{CC}}$		
$V_{\text {IL }}$	LOW level Input voltage	$\mathrm{V}_{C C}=1.2 \mathrm{~V}$			0.3		0.3	V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$			0.6		0.6	
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V			0.8		0.8	
		$\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5			$0.3{ }^{*} \mathrm{~V}_{\mathrm{CC}}$		$0.3 * V_{C C}$	
V_{OH}	HIGH level output voltage; all outputs	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL} ;}-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$		1.2				V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ;-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$	1.8	2.0		1.8		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL} ;}-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$	2.5	2.7		2.5		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$	2.8	3.0		2.8		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL; }}-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$	4.3	4.5		4.3		
V_{OH}	HIGH level output voltage; STANDARD outputs	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }} ;-\mathrm{l}_{\mathrm{O}}=6 \mathrm{~mA}$	2.40	2.82		2.20		V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ;-\mathrm{l}_{\mathrm{O}}=12 \mathrm{~mA}$	3.60	4.20		3.50		
V_{OL}	LOW level output voltage; all outputs	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0				V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} I $\mathrm{I}^{2}=100 \mu \mathrm{~A}$		0	0.2		0.2	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; $\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0	0.2		0.2	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0	0.2		0.2	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL} ;} \mathrm{I} \mathrm{O}=100 \mu \mathrm{~A}$		0	0.2		0.2	
V_{OL}	LOW level output voltage; STANDARD outputs	$\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V} ; \mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL; }} \mathrm{I} \mathrm{I}=6 \mathrm{~mA}$		0.25	0.40		0.50	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{l}_{\mathrm{O}}=12 \mathrm{~mA}$		0.35	0.55		0.65	
1	Input leakage current	$\mathrm{V}_{C C}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND			1.0		1.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	Quiescent supply current; flip-flops	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0$			20.0		80	$\mu \mathrm{A}$
$\Delta^{\text {l }}$ c	Additional quiescent supply current per input	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6V; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$			500		850	$\mu \mathrm{A}$

NOTE:

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Dual D-type flip-flop with set and reset; positive edge-trigger

AC CHARACTERISTICS
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$

SYMBOL	PARAMETER	WAVEFORM	CONDITION	$\begin{gathered} \text { LIMITS } \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { LIMITS } \\ -40 \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		UNIT
			$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	MIN	TYP ${ }^{1}$	MAX	MIN	MAX	
tPhltpLh	Propagation delay $n C P$ to $n Q, n \bar{Q}$	Figures, 1, 3	1.2	-	70	-	-	-	ns
			2.0	-	24	44	-	56	
			2.7	-	18	28	-	41	
			3.0 to 3.6	-	13^{2}	26	-	33	
			4.5 to 5.5	-	$9.5{ }^{3}$	17	-	23	
tPHLIPLH	Propagation delay $n \bar{S}_{D}$ to $n Q, n \bar{Q}$	Figures 2, 3	1.2	-	90	-	-	-	ns
			2.0	-	31	46	-	58	
			2.7	-	23	34	-	43	
			3.0 to 3.6	-	17^{2}	27	-	34	
			4.5 to 5.5	-	12^{3}	19	-	24	
tphLIPLH	Propagation delay $n \bar{R}_{D}$ to $n Q, n \bar{Q}$	Figures 2, 3	1.2	-	90	-	-	-	ns
			2.0	-	31	46	-	58	
			2.7	-	23	34	-	43	
			3.0 to 3.6	-	17^{2}	27	-	34	
			4.5 to 5.5	-	12^{3}	19	-	24	
tw	Clock pulse width HIGH to LOW	Figure 1	2.0	34	10	-	41	-	ns
			2.7	25	8	-	30	-	
			3.0 to 3.6	20	7^{2}	-	24	-	
			4.5 to 5.5	15	6^{3}	-	18	-	
tw	Set or reset pulse width LOW	Figure 2	2.0	34	10	-	41	-	ns
			2.7	25	8	-	30	-	
			3.0 to 3.6	20	7^{2}	-	24	-	
			4.5 to 5.5	15	6^{3}	-	18	-	
trem	Removal time set or reset	Figure 2	1.2	-	5	-	-	-	ns
			2.0	14	2	-	15	-	
			2.7	10	1	-	11	-	
			3.0 to 3.6	8	1^{2}	-	9	-	
			4.5 to 5.5	6	1^{3}	-	7	-	
$\mathrm{t}_{\text {su }}$	Set-up time nD to nCP	Figure 1	1.2	-	10	-	-	-	ns
			2.0	22	4	-	26	-	
			2.7	12	3	-	15	-	
			3.0 to 3.6	8	2^{2}	-	10	-	
			4.5 to 5.5	6	1^{2}	-	8	-	
$t_{\text {h }}$	Hold time nD to nCP	Figure 1	1.2	-	-10	-	-	-	ns
			2.0	3	-2	-	3	-	
			2.7	3	-2	-	3	-	
			3.0 to 3.6	3	-2^{2}	-	3	-	
			4.5 to 5.5	3	-2^{3}	-	3	-	
$\mathrm{f}_{\text {max }}$	Maximum clock pulse frequency	Figure 1	2.0	14	40	-	12	-	MHz
			2.7	50	90	-	40	-	
			3.0 to 3.6	60	100^{2}	-	48	-	
			4.5 to 5.5	70	110^{3}	-	56	-	

NOTE:

1. Unless otherwise stated, all typical values are at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. Typical value measured at $\mathrm{V}_{C C}=3.3 \mathrm{~V}$.
3. Typical value measured at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}																	
max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$	
mm	2.0	0.21	1.80	0.25	0.38	0.20	6.4	5.4	0.65	7.9	1.25	1.03	0.9	0	0.13	0.1	1.4	8°
0.65	1.65	0.25	0.09	6.0	5.2	0.65	7.6	0.7	0.2	0.13	0.0							

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN
	IEC	JEDEC	EIAJ		
SOT337-1		MO-150AB			

